Let a (pure or mixed) quantum state of a one-dimensional particle be represented by a Wigner function \(W(x,p)\). Here, \(x\) and \(p\) are the particle's position and momentum, respectively. Density operator The density operator \(\rho\) representing the state can be expressed in terms of the Wigner function: \[\rho = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dp \, | x' \rangle \, e^{i p (x' - x) / \hbar} W \left( \frac{x + x'}{2}, p \right) \langle x | \,.\] Proof: According to the definition of the Wigner function, \[W(x,p) = \frac{1}{2 \pi \hbar} \int_{-\infty}^{+\infty} dx' \, e^{-i p x' / \hbar} \langle x + \tfrac{1}{2} x' | \rho | x - \tfrac{1}{2} x' \rangle \,.\] Hence, \[\begin{align} \int_{-\infty}^{+\infty} dp \, e^{i p \xi' / \hbar} W(\xi,p) &= \frac{1}{2 \pi \hbar} \int_{-\infty}^{+\infty} d\xi'' \, \langle \xi + \tfrac{1}{2} \xi'' |\rho | \xi - \tfrac{1}{2}