Consider a quantum particle of mass \(m\) moving in a \(D\)-dimensional space under the action of a Hamiltonian \[H = T + V \,,\] where \[T = \frac{\boldsymbol{p} \cdot \boldsymbol{p}}{2 m} = \frac{p_1^2 + p_2^2 + \ldots + p_D^2}{2 m}\] is the kinetic energy, and \[V = V(\boldsymbol{x}) = V(x_1, x_2, \ldots, x_D)\] is the potential energy. Here, \(x_j\) and \(p_j\), with \(j = 1, 2, \ldots, D\), are Cartesian components of the particle's position and momentum vectors, respectively, satisfying the standard commutation relation: \[[x_j, p_k] = i \hbar \delta_{jk} \,.\] Suppose further that the potential \(V\) is confining, and that the particle is in a bound state \(| \psi \rangle\) of energy \(E\), i.e. \[H | \psi \rangle = E | \psi \rangle \,.\] The virial theorem states that the expectation value of the kinetic energy is given by \[\boxed{ \langle T \rangle = \tfrac{1}{2} \langle \boldsymbol{x} \cdot \boldsymbol{\nabla} V \rangle }\] Here, \[\langle \cdot \rangle \equi