Bound state energy levels \(E<0\) of a two-dimensional hydrogen atom are determined by the Schrödinger equation \[\left( -\frac{\hbar^2}{2 m} (\partial_x^2 + \partial_y^2) - \frac{q^2}{\sqrt{x^2 + y^2}} \right) \psi = E \psi \,,\] where \(m\) and \(q\) are the mass and charge of the electron, respectively, and \(\psi(x,y)\) is the electronic wave function. This equation can be solved in terms of Kummer's confluent hypergeometric function (see this post for details). Here we show how the two-dimensional hydrogen atom can be mapped onto a two-dimensional harmonic oscillator. This mapping has been discussed, e.g., in Quantum Mechanics of H-Atom from Path Integrals . We begin by making a coordinate transformation from \((x,y)\) to \((u,v)\) defined by \[\begin{align} x &= u^2 - v^2 , \\ y &= 2 u v \,. \end{align}\] From \[\begin{pmatrix} \partial_u \\ \partial_v \end{pmatrix} = J \begin{pmatrix} \partial_x \\ \partial_y \end{pmatrix}\] with \[J = \begin{pmatrix