Consider a quantum particle moving along the \(x\) axis. Let the particle's state be represented by a density operator \(\rho\). If the particle is in a pure state \(| \psi \rangle\), then \(\rho = | \psi \rangle \langle \psi |\). The particle's state can also be described in phase space, with position and momentum variables \(x\) and \(p\), by means of an appropriate quasi-probability distribution . The Wigner function \(W(x,p)\) is one of the most prominent choices. Definition The Wigner function is defined as \[W(x,p) = \frac{1}{2 \pi \hbar} \int_{-\infty}^{+\infty} dx' \, e^{-i p x' / \hbar} \langle x + \tfrac{1}{2} x' |\rho | x - \tfrac{1}{2} x' \rangle \,.\] Equivalently, it can be written as an integral over momentum: \[W(x,p) = \frac{1}{2 \pi \hbar} \int_{-\infty}^{+\infty} dp' \, e^{i p' x / \hbar} \langle p + \tfrac{1}{2} p' |\rho | p - \tfrac{1}{2} p' \rangle \,.\] Proof: Making use of the completeness relation